【资料图】
1、首先要知道球心在正四棱锥的高上,然后考察正四棱锥的高与底面一顶点构成的三角形,在高上找一点,使该点到正四棱锥的顶点与底面一顶点的距离相等,该点就是球心.设正四棱锥的顶点为P,底面一顶点为A,底面中心为O,又设PA=m,PO=h,底边长为a,则OA=√2a/2,m^2=h^2+(1/2)a^2在△PAO中,作PA的中垂线交PO于I点,该点即为球心I,设PI=r,则r=(1/2)m÷cos∠APO,而cos∠APO=h/m,所以球半径为r=m^2/2h=(h^2+(1/2)a^2)/2h.。
本文就为大家分享到这里,希望看了会喜欢。
标签:
要文